复变函数B 习题解答 第二章

第二章:复变数函数

存疑部分:

  • 第 7 题与书上所供答案不符,怀疑书上答案错误;另 7(2) 可能存在简化可能
  • 第 17 题与书供答案不符:(1)-6, (2)-2

1. 曲线变换

w:(x,y)(u,v)w:(x,y)\rightarrow(u,v)
则有:u=xx2+y2,v=yx2+y2u=\frac x {x^2+y^2},v=\frac{-y}{x^2+y^2}

  1. x=1x=1,则有 u=11+y2,v=y1+y2u=\frac 1 {1+y^2},v=\frac{-y}{1+y^2},消参得 (u12)2+v2=14(u-\frac 1 2)^2+v^2=\frac 1 4,为以 (12,0)(\frac{1}{2},0) 为圆心,12\frac{1}{2} 为半径的圆
  2. y=0y=0,则有u=1x,v=0u=\frac 1 x,v=0,为除去原点的 uu
  3. x=yx=y,则有u=12x,v=12xu=\frac 1 {2x},v=-\frac{1}{2x},为除去原点的直线 u=vu=-v
  4. x2+y2=4x^2+y^2=4,则有u=x4,v=y4u=\frac x 4,v=-\frac{y}4u2+v2=14u^2+v^2=\frac 1 4,为以原点为圆心,12\frac{1}{2} 为半径的圆
  5. (x1)2+y2=5(x-1)^2+y^2=5,则有u=x4+2x,v=y4+2xu=\frac x {4+2x},v=\frac{-y}{4+2x},消参得(u+14)2+v2=516(u+\frac 1 4)^2+v^2=\frac 5 {16},为以 (14,0)(-\frac{1}{4},0) 为圆心,54\frac{\sqrt{5}}{4} 为半径的圆

2. 证明题

不妨设 z=x+yiz=x+yi
则原式 =2xyx2+y2=\frac {2xy} {x^2+y^2},取 y=kxy=kx 易知极限不存在。

3. 证明题

类似 (2)(2),取 y=kxy=kx 可得极限不存在。

4. 证明题

Pn(z)=anzn+an1zn1+a0P_n(z)=a_nz^n+a_{n-1}z^{n-1}\cdots+a_0,则Pn(z)anznan1zn1a0|P_n(z)|\geq |a_n||z|^n-|a_{n-1}||z|^{n-1}-\cdots-|a_0|,看成关于 z|z| 的多项式,则 z,zz\rightarrow\infin,|z|\rightarrow\infinPn(z)|P_n(z)|\rightarrow\infin,也即 Pn(z)P_n(z)\rightarrow\infin

5. 证明题

  1. f(z)=z=x2+y2f(z)=|z|=\sqrt{x^2+y^2}, 而在原点外 uxvy=0\frac{\partial u}{\partial x}\neq\frac{\partial v}{\partial y}=0,不可导。在原点上,limΔz0Δf(z)Δz=limΔz0(Δx)2+(Δy)2Δx+iΔy=limΔz0ΔxiΔy(Δx)2+(Δy)2\lim\limits_{\Delta z\to 0} \frac{\Delta f(z)}{\Delta z}=\lim\limits_{\Delta z\to 0}\frac {\sqrt{(\Delta x)^2+(\Delta y)^2}} {\Delta x+i\Delta y}=\lim\limits_{\Delta z\to 0} \frac{\Delta x-i\Delta y}{\sqrt{(\Delta x)^2+(\Delta y)^2}}, 取y=kxy=kx可得极限不存在。综上原函数处处不可导。

  2. f(z)=x+yf(z)=x+y,在任意一点 ux=1vy=0\frac{\partial u}{\partial x}=1\neq\frac{\partial v}{\partial y}=0,不可导。

  3. f(z)=1zˉ=x+yix2+y2f(z)=\frac 1 {\bar z}=\frac{x+yi}{x^2+y^2},易得原函数在原点外不满足 C-R 方程,不可导。原点处 limΔz0Δf(z)Δz=limΔz01ΔzΔzˉ=limΔz01Δz2\lim\limits_{\Delta z\to 0} \frac{\Delta f(z)}{\Delta z}=\lim\limits_{\Delta z\to 0}\frac 1 {\Delta z\Delta \bar z} =\lim\limits_{\Delta z\to 0}\frac 1 {|\Delta z|^2}\to \infin,极限不存在。综上原函数处处不可导。

6. 求解析区域

  1. 带入 C-R 方程 {y=10=x\begin{cases}y=1\\0=-x\end{cases},解得在 (0,1)(0,1) 处可导。因此在平面内不解析

  2. z1|z|\ge1 时,幂函数可导。

    z<1|z|<1 时,{ux=x2+y2+xx2+y2vy=x2+y2\begin{cases} \frac{\partial u}{\partial x}=\sqrt{x^2+y^2}+\frac{x}{\sqrt{x^2+y^2}}\\ \frac{\partial v}{\partial y}=\sqrt{x^2+y^2} \end{cases}uxvy\frac{\partial u}{\partial x}\not=\frac{\partial v}{\partial y},因此原函数不可导。
    综上原函数在 z>1|z|>1解析

7. 求导数

  1. {ux=vy=3x23y2uy=vx=6xy\begin{cases} \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=3x^2-3y^2\\ \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}=-6xy \end{cases}

    fx=3z2\frac{\partial f}{\partial x}=3z^2

  2. {ux=vy=ex(xcosyysiny+cosy)uy=vx=ex(xsiny+ycosy+siny)\begin{cases} \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=e^x(x\cos y-y\sin y+\cos y)\\ \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}=-e^x(x\sin y+y\cos y+\sin y) \end{cases}

    fx=ex(xcosyysiny+cosy)iex(xsiny+ycosy+siny)\frac{\partial f}{\partial x}=e^x(x\cos y-y\sin y+\cos y)-ie^x(x\sin y+y\cos y+\sin y)

  3. {ux=vy=sinxchyuy=vx=cosxshy\begin{cases} \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=-\sin x\ch y\\ \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}=-\cos x\sh y \end{cases}

    fx=sinxchyicosxshy\frac{\partial f}{\partial x}=-\sin x\ch y-i\cos x\sh y

8.证明

解析函数满足 C-R 方程

  1. 由题意,ux=uy=0\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}=0,故 u(x,y)u(x,y) 为常数。同理,v(x,y)v(x,y) 为常数,故 ff 为常数
  2. vy=ux=vy,vx=uy=vx-\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},-\frac{\partial v}{\partial x}=\frac{\partial u}{\partial y}=\frac{\partial v}{\partial x},可推得四个偏导均为 0,进而有 u(x,y),v(x,y)u(x,y),v(x,y) 为常数,故 ff 为常数
  3. 由题意 vy=ux=0,vx=uy=0\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}=0,\frac{\partial v}{\partial x}=\frac{\partial u}{\partial y}=0,四个偏导均为 0,后同 (2)
  4. 同 (3)
  5. u2+v2=Cu^2+v^2=C,两边对 x,yx,y 求偏导后得到带入 C-R 方程,得到的解为四个偏导均为 0,后同 (2)
  6. arctan(vu)=C\arctan(\frac v u)=C,得 v=ku,kv=ku, k 为实数。两边对 x,yx,y 求偏导后带入 C-R 方程,由 kk 为实数得四个偏导均为 0,后同 (2)

9. 证明及验证

(注:本题的 u,vu, v 为直角坐标系,r,θr, \theta 为极坐标系)

首先由定义,{x=rcosθy=rsinθ\begin{cases} x=r\cos\theta\\ y=r\sin\theta \end{cases}

则有以下关系

{ur=uxxr+uyyr=cosθux+sinθuyuθ=uxxθ+uyyθ=rsinθux+rcosθuyvr=vxxr+vyyr=cosθvx+sinθvyvθ=vxxθ+vyyθ=rsinθvx+rcosθvy\begin{cases} \frac{\partial u}{\partial r}=\frac{\partial u}{\partial x}\frac{\partial x}{\partial r}+\frac{\partial u}{\partial y}\frac{\partial y}{\partial r}=&\cos\theta \frac{\partial u}{\partial x}+\sin\theta \frac{\partial u}{\partial y}\\ \frac{\partial u}{\partial \theta}=\frac{\partial u}{\partial x}\frac{\partial x}{\partial \theta}+\frac{\partial u}{\partial y}\frac{\partial y}{\partial \theta}=&-r\sin\theta \frac{\partial u}{\partial x}+r\cos\theta \frac{\partial u}{\partial y}\\ \frac{\partial v}{\partial r}=\frac{\partial v}{\partial x}\frac{\partial x}{\partial r}+\frac{\partial v}{\partial y}\frac{\partial y}{\partial r}=&\cos\theta \frac{\partial v}{\partial x}+\sin\theta \frac{\partial v}{\partial y}\\ \frac{\partial v}{\partial \theta}=\frac{\partial v}{\partial x}\frac{\partial x}{\partial \theta}+\frac{\partial v}{\partial y}\frac{\partial y}{\partial \theta}=&-r\sin\theta \frac{\partial v}{\partial x}+r\cos\theta \frac{\partial v}{\partial y}\\ \end{cases}

解方程可得

{ux=cosθur1rsinθuθuy=sinθur+1rcosθuθvx=cosθvr1rsinθvθvy=sinθvr+1rcosθvθ\begin{cases} \frac{\partial u}{\partial x}=&\cos\theta\frac{\partial u}{\partial r}-\frac{1}{r}\sin\theta\frac{\partial u}{\partial\theta}\\ \frac{\partial u}{\partial y}=&\sin\theta\frac{\partial u}{\partial r}+\frac{1}{r}\cos\theta\frac{\partial u}{\partial\theta}\\ \frac{\partial v}{\partial x}=&\cos\theta\frac{\partial v}{\partial r}-\frac{1}{r}\sin\theta\frac{\partial v}{\partial\theta}\\ \frac{\partial v}{\partial y}=&\sin\theta\frac{\partial v}{\partial r}+\frac{1}{r}\cos\theta\frac{\partial v}{\partial\theta}\\ \end{cases}

代入直角坐标系下的 C-R 方程

{cosθur1rsinθuθ=sinθvr+1rcosθvθsinθur+1rcosθuθ=(cosθvr1rsinθvθ)\begin{cases} \cos\theta\frac{\partial u}{\partial r}-\frac{1}{r}\sin\theta\frac{\partial u}{\partial\theta}=&\sin\theta\frac{\partial v}{\partial r}+\frac{1}{r}\cos\theta\frac{\partial v}{\partial\theta}\\ \sin\theta\frac{\partial u}{\partial r}+\frac{1}{r}\cos\theta\frac{\partial u}{\partial\theta}=&-(\cos\theta\frac{\partial v}{\partial r}-\frac{1}{r}\sin\theta\frac{\partial v}{\partial\theta})\\ \end{cases}

解得 {ur=1rvθ1ruθ=vr\begin{cases} \frac{\partial u}{\partial r}=\frac{1}{r}\frac{\partial v}{\partial \theta}\\ \frac{1}{r}\frac{\partial u}{\partial \theta}=-\frac{\partial v}{\partial r} \end{cases}

验证: 设 z=reiθz=re^{i\theta}
f(z)=rneinθf(z)=r^ne^{in\theta}
u(r,θ)=rncosnθ,v(r,θ)=rnsinnθu(r,\theta)=r^n\cos n\theta,v(r,\theta)=r^n\sin n\theta
{ur=nrn1cosnθvr=nrn1sinnθuθ=nrnsinnθvθ=nrncosnθ\begin{cases} \frac{\partial u}{\partial r}=nr^{n-1}\cos n\theta\\ \frac{\partial v}{\partial r}=nr^{n-1}\sin n\theta\\ \frac{\partial u}{\partial \theta}=-nr^n\sin n\theta\\ \frac{\partial v}{\partial \theta}=nr^n\cos n\theta\\ \end{cases}
符合 C-R 方程

10. 求解析区域及微商

都为有理函数,因此:

  1. z=1,2z=1,2 外解析,f(z)=32z(z23z+2)2f'(z)=\frac {3-2z} {(z^2-3z+2)^2}
  2. z=a13ei2kπ3(k=0,1,2)z=a^{\frac 1 3}e^{i\frac {2k\pi}{3}}(k=0,1,2) 外解析,f(z)=3z2(z3+a)2f'(z)=\frac {-3z^2} {(z^3+a)^2}

11. 判断极限存在性

z=x+iyz=x+iy

  1. y=0,xy=0,x\to\infin 时极限为 00x=0,yx=0,y\to\infin 时原式的模 \to\infin,故极限不存在
  2. y=0,x0+y=0,x\to 0^+ 时极限显然为 00,在 x=0,y0+x=0,y\to 0^+ 时原式 =y2(e1ye1y)=\frac{y}{2}(e^{\frac{1}{y}}-e^{-\frac{1}{y}})\to\infty,故极限不存在
  3. limz1+e1z1\lim\limits_{z\to 1^+}e^{\frac 1{z-1}}\to \infin,而 limz1e1z10\lim\limits_{z\to 1^-}e^{\frac 1{z-1}}\to 0,同时式子其他部分均手链,故极限不存在。

12 极限

z=x+iyz=x+iy

  1. z|z|\to\inftyx0x\not=0 即不沿着 yy 轴,此时有模长 z+ezezz=exx|z+e^z|\ge|e^z|-|z|=e^{|x|}-|x|\to\infin,故原式极限为 \infin
  2. z|z|\to\inftyx=0x=0,则 z+ezzez=z1=y1z+e^z\ge|z|-|e^z|=|z|-1=|y|-1\to\inftyy=2kπy=2k\pi 时为1,故原式极限为 \infin

13 求下列方程的全部解

  1. sinz=12i(eizeiz)=2\sin z=\frac{1}{2i}(e^{iz}-e^{-iz})=2
    解一元二次方程组得 eiz=(2±3)ie^{iz}=(2\pm\sqrt3)i
    z=2iLn[(2±3)i]=(4k+1)π2iln(2+3)z=-2i\operatorname{Ln}[(2\pm\sqrt3)i]=(4k+1)\pi-2i\ln(2+\sqrt{3})
  2. chz=12(ez+ez)=0\ch z=\frac{1}{2}(e^{z}+e^{-z})=0
    e2z=1e^{2z}=-1
    z=12Ln(1)=i(k+12)πz=\frac 1 2 \operatorname{Ln}(-1)=i(k+\frac{1}{2})\pi
  3. A=reiθA=re^{i\theta}
    z=LnA=lnr+i(θ+2kπ)z=\operatorname{Ln}A=\ln r+i(\theta+2k\pi)
    可化得 z=lnA+i(argA+2kπ)z=\ln|A|+i(\arg A+2k\pi)

14 求解析区域及微商

直接运用函数求导法则即可

  1. zLn(1)=i(2k+1)πz\neq \operatorname{Ln}(-1)=i(2k+1)\pi
    f(z)=ez(1+ez)2f'(z)=-\frac{e^z}{(1+e^z)^2}
  2. ziLn[(2±3)i]=(2k+12)πiln(2±3)z\neq -i\operatorname{Ln}[(2\pm\sqrt3)i]=(2k+\frac{1}{2})\pi-i\ln(2\pm\sqrt{3})
    f(z)=cosz(sinz2)2f'(z)=-\frac{\cos z}{(\sin z-2)^2}
  3. z1z\neq 1
    f(z)=e1z1(1z(z1)2)f'(z)=e^{\frac 1{z-1}}(1-\frac{z}{(z-1)^2})

15 证明恒等式

  1. cosz1cosz2sinz1sinz2=14(eiz1+eiz1)(eiz2+eiz2)+14(eiz1eiz1)(eiz2eiz2)=12(ei(z1+z2)+ei(z1+z2))=cos(z1+z2)\begin{aligned} &\cos z_1\cos z_2-\sin z_1\sin z_2\\ =&\frac{1}{4}(e^{iz_1}+e^{-iz_1})(e^{iz_2}+e^{-iz_2})+\frac{1}{4}(e^{iz_1}-e^{-iz_1})(e^{iz_2}-e^{-iz_2})\\ =&\frac{1}{2}(e^{i(z_1+z_2)}+e^{-i(z_1+z_2)})\\ =&\cos(z_1+z_2)\\[-64pt] \end{aligned}
  2. shz1chz2+chz1shz2=14(ez1ez1)(ez2+ez2)+14(ez2ez2)(ez1+ez1)=12(ez1+z2e(z1+z2))=sh(z1+z2)\begin{aligned} &\sh z_1\ch z_2+\ch z_1\sh z_2\\ =&\frac{1}{4}(e^{z_1}-e^{-z_1})(e^{z_2}+e^{-z_2})+\frac{1}{4}(e^{z_2}-e^{-z_2})(e^{z_1}+e^{-z_1})\\ =&\frac{1}{2}(e^{z_1+z_2}-e^{-(z_1+z_2)})\\ =&\sh(z_1+z_2)\\[-64pt] \end{aligned}
    类似的,shz1chz2chz1shz2=sh(z1z2)\sh z_1\ch z_2-\ch z_1\sh z_2=\sh(z_1-z_2)
    综上有 sh(z1±z2)=shz1chz2±chz1shz2\sh(z_1\pm z_2)=\sh z_1\ch z_2\pm\ch z_1\sh z_2

16 求范围

解:cosz=12(eiz+eiz)=12(eixy+eyix)=12(ey(cosx+isinx)+ey(cosxisinx))\begin{aligned} \cos z&=\frac{1}{2}(e^{iz}+e^{-iz})\\ &=\frac{1}{2}(e^{ix-y}+e^{y-ix})\\ &=\frac{1}{2}(e^{-y}(\cos x+i\sin x)+e^{y}(\cos x-i\sin x))\\[-47pt] \end{aligned}

因此当 eysinxeysinx=0e^{-y}\sin x-e^{y}\sin x=0cosz\cos z 取实数值,即在 y=kπy=k\pix=kπx=k\pi 上为实数。(k=0,±1,±2k=0,\pm 1, \pm 2\dots

17 求下列各值

以下 k=0,±1,±2k=0,\pm 1, \pm 2\dots

    • Ln(1)=ln1+i(2kπ+arg(1))=i(2kπ+π)\operatorname{Ln}(-1)=\ln|-1|+i(2k\pi+\arg(-1))=i(2k\pi+\pi)
    • ln(1)=iπ\ln(-1)=i\pi
    • Lni=lni+i(2kπ+argi)=i(2kπ+π2)\operatorname{Ln} i=\ln|i|+i(2k\pi+\arg i)=i(2k\pi+\frac{\pi}{2})
    • lni=iπ2\ln i=\frac{i\pi}{2}
    • Ln(32i)=ln32i+i(2kπ+arg(32i))=13+i(2kπarctan23)\operatorname{Ln}(3-2i)=\ln|3-2i|+i(2k\pi+\arg(3-2i))=\sqrt{13}+i(2k\pi-\arctan\frac{2}{3})
    • ln(2+3i)=13+i(πarctan32)\ln(-2+3i)=\sqrt{13}+i(\pi-\arctan\frac{3}{2})
  1. 本题答案用 ex+yie^{x+yi} 的形式表示,且 x,yx,y 中不含 ii
    • 12=e2Ln1=e2i2kπ=ei22kπ1^{\sqrt{2}}=e^{\sqrt{2}\operatorname{Ln}1}=e^{\sqrt{2}i\cdot 2k\pi}=e^{i2\sqrt{2}k\pi}
    • (2)2=e2Ln(2)=e2(ln2+i(2kπ+π))(-2)^{\sqrt{2}}=e^{\sqrt{2}\operatorname{Ln}(-2)}=e^{\sqrt{2}(\ln 2+i(2k\pi+\pi))}
    • 2i=eiLn2=ei(ln2+i2kπ)=e2kπ+iln22^i=e^{i\operatorname{Ln}2}=e^{i(\ln 2+i\cdot 2k\pi)}=e^{-2k\pi+i\ln 2}
    • (34i)1+i=e(1+i)Ln(34i)=e(ln5+arctan432kπ)+i(ln5arctan43+2kπ)(3-4i)^{1+i}=e^{(1+i)\operatorname{Ln}(3-4i)}=e^{(\ln 5+\arctan\frac{4}{3}-2k\pi)+i(\ln 5-\arctan\frac{4}{3}+2k\pi)}
  2. 本题有多种理解方式,下按“化简成 x+yix+yi,且 x,yx,y 中不含 ii”来化简
    主要用到的公式:shz=isiniz,chz=cosiz\sh z=-i\sin iz,\ch z=\cos iz
    • cos(2+i)=cos2cosisin2sini=ch1cos2ish1sin2\cos(2+i)=\cos 2\cos i-\sin 2\sin i=\ch 1\cos 2-i\sh 1\sin 2
    • sin2i=ish2\sin 2i=i\sh 2
    • 首先有 tan(iln2)=sin(iln2)cos(iln2)=ish(ln2)ch(ln2)=3i5\tan (i\ln 2)=\frac{\sin (i\ln 2)}{\cos (i\ln 2)}=\frac{i\sh (\ln 2)}{\ch (\ln 2)}=\frac{3i}{5}
      cot(π4iln2)=1+tan(iln2)1tan(iln2)=8+15i17\cot\left(\frac{\pi}{4}-i\ln 2\right)=\frac{1+\tan (i\ln 2)}{1-\tan (i\ln 2)}=\frac{8+15i}{17}
    • cth(2+i)=ch2chi+sh2shish2chi+ch2shi=ch2cos(1)ish2sin(1)sh2cos(1)ich2sin(1)=ch2sh2icos1sin1sh22cos21+ch22sin21=12sh4i2cos2sh22(1sin21)+(1+sh22)sin21=sh4icos22(sh22+sin21)\begin{aligned}\cth(2+i)&=\frac{\ch 2\ch i+\sh 2\sh i}{\sh 2\ch i+\ch 2\sh i}\\ &=\frac{\ch 2\cos(-1)-i\sh 2\sin(-1)}{\sh 2\cos(-1)-i\ch 2\sin(-1)}\\ &=\frac{\ch 2\sh 2-i\cos 1\sin 1}{\sh^2 2\cos^2 1+\ch^2 2\sin^2 1}\\ &=\frac{\frac{1}{2}\sh 4-\frac{i}{2}\cos 2}{\sh^2 2(1-\sin^2 1)+(1+\sh^2 2)\sin^2 1}\\ &=\frac{\sh 4-i\cos 2}{2(\sh^2 2+\sin^2 1)}\\[-109pt] \end{aligned}
  3. 本题的大括号表示多解
    • Arcsini=iLn(1±2)={2kπiln(21)(2k+1)πiln(2+1)\operatorname{Arcsin}i=-i\operatorname{Ln}(-1\pm\sqrt{2})=\begin{cases}2k\pi-i\ln(\sqrt{2}-1)\\(2k+1)\pi-i\ln(\sqrt{2}+1)\end{cases}
    • Arccos2=iLn(2±3)=2kπiln(2±3)\operatorname{Arccos}2=-i\operatorname{Ln}(2\pm\sqrt{3})=2k\pi-i\ln(2\pm\sqrt{3})
    • Arctan(1+2i)=i2Ln2+i5=(k+12)π12arctan12+iln54\operatorname{Arctan}(1+2i)=-\frac{i}{2}\operatorname{Ln}\frac{-2+i}{5}=(k+\frac{1}{2})\pi-\frac{1}{2}\arctan\frac{1}{2}+i\frac{\ln 5}{4}
    • Arcch2i=Ln(i(2±5))={ln(5+2)+i(2k+12)πln(52)+i(2k12)π\operatorname{Arcch}2i=\operatorname{Ln}(i(2\pm \sqrt{5}))=\begin{cases}\ln(\sqrt{5}+2)+i(2k+\frac{1}{2})\pi\\\ln(\sqrt{5}-2)+i(2k-\frac{1}{2})\pi\end{cases}

18

z=x+yi,x,yRz=x+yi,x,y\in\mathbb{R}

  1. ezˉ=exyi=exeyi=ex(cos(y)+isin(y))=ex(cosy+isiny)=ex+yi=eze^{\bar{z}}=e^{x-yi}=e^xe^{-yi}=e^x(\cos(-y)+i\sin(-y))=\overline{e^x(\cos y+i\sin y)}=\overline{e^{x+yi}}=\overline{e^z}
  2. sinzˉ=12i(eizˉeizˉ)=12i(ey+xieyxi)=12i(ey(cosx+isinx)ey(cos(x)+isin(x)))=12i(ey(cos(x)+isin(x))+ey(cosx+isinx))=12i(ey+xieyxi)=12i(eizeiz)=sinz\begin{aligned}\sin\bar z&=\frac{1}{2i}(e^{i\bar z}-e^{-i\bar z})\\ &=\frac{1}{2i}(e^{y+xi}-e^{-y-xi})\\ &=\frac{1}{2i}(e^{y}(\cos x+i\sin x)-e^{-y}(\cos(-x)+i\sin(-x)))\\ &=\overline{\frac{1}{2i}(-e^{y}(\cos(-x)+i\sin (-x))+e^{-y}(\cos x+i\sin x))}\\ &=\overline{\frac{1}{2i}(e^{-y+xi}-e^{y-xi})}\\ &=\overline{\frac{1}{2i}(e^{iz}-e^{-iz})}\\ &=\overline{\sin z}\\[-138pt] \end{aligned}